Welcome to the CCO Site

Thank you for your interest in CCO content. As a guest, please complete the following information fields. These data help ensure our continued delivery of impactful education. 

Become a member (or login)? Member benefits include accreditation certificates, downloadable slides, and decision support tools.

Submit

Key Studies in Gastrointestinal Cancers: Independent Conference Coverage of the 2020 ASCO Virtual Scientific Meeting
  • CME

Axel Grothey Headshot
Axel Grothey, MD
Manish A. Shah, MD
Released: August 7, 2020
Back Next

References

  1. Andre T, Shiu K-K, Kim TW, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer: The phase 3 KEYNOTE-177 Study. Program and abstracts of the 2020 Annual Meeting of the American Society of Clinical Oncology; May 29-31, 2020. Abstract LBA4.
  2. Shitara K, Van Cutsem E, Bang Y, et al. Pembrolizumab with or without chemotherapy vs chemotherapy in patients with advanced G/GEJ cancer (GC) including outcomes according to microsatellite instability-high (MSI-H) status in KEYNOTE-062. Ann Oncol. 2019;30(suppl_5):v851-v934.
  3. Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36:773-779.
  4. Lenz HJ, van Cutsem E, Limon ML, et al. Durable clinical benefit with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line therapy in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC). Ann Oncol. 2018;29(suppl_8). Abstract LBA18_PR.
  5. Gandhi L, Rodríguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med. 2018;378:2078-2092.
  6. Schrock AB, Ouyang C, Sandhu J, et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann Oncol. 2019;30:1096-1103.
  7. Grothey A, Sobrero AF, Shields AF, et al. Duration of adjuvant chemotherapy for stage III colon cancer. N Engl J Med. 2018;378:1177-1188.
  8. Sobrero AF, Andre T, Meyerhardt JA, et al. Overall survival (OS) and long-term disease-free survival (DFS) of three versus six months of adjuvant (adj) oxaliplatin and fluoropyrimidine-based therapy for patients (pts) with stage III colon cancer (CC): final results from the IDEA (International Duration Evaluation of Adj chemotherapy) collaboration. Program and abstracts of the 2020 Annual Meeting of the American Society of Clinical Oncology; May 29-31, 2020. Abstract 4004.
  9. Garcia-Aguilar J, Patil S, Kim JK, et al. Preliminary results of the organ preservation of rectal adenocarcinoma (OPRA) trial. Program and abstracts of the 2020 Annual Meeting of the American Society of Clinical Oncology; May 29-31, 2020. Abstract 4008.
  10. Hospers G, Bahadoer RR, Dijkstra EA, et al. Short-course radiotherapy followed by chemotherapy before TME in locally advanced rectal cancer: the randomized RAPIDO trial. Program and abstracts of the 2020 Annual Meeting of the American Society of Clinical Oncology; May 29-31, 2020. Abstract 4006.
  11. Conroy T, Lamfichekh N, Etienne P-L, et al. Total neoadjuvant therapy with mFOLFIRINOX versus preoperative chemoradiation in patients with locally advanced rectal cancer: final results of PRODIGE 23 phase III trial, a UNICANCER GI trial. Program and abstracts of the 2020 Annual Meeting of the American Society of Clinical Oncology; May 29-31, 2020. Abstract 4007.
  12. Sohal D, Duong MT, Ahmad SA, et al. SWOG S1505: results of perioperative chemotherapy (peri-op CTx) with mfolfirinox versus gemcitabine/nab-paclitaxel (Gem/nabP) for resectable pancreatic ductal adenocarcinoma (PDA). Program and abstracts of the 2020 Annual Meeting of the American Society of Clinical Oncology; May 29-31, 2020. Abstract 4504.
  13. Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817-1825.
  14. Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691-1703.
  15. Conroy T, Hammel P, Hebbar M, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med. 2018;379:2395-2406.
  16. Tempero MA, Reni M, Riess H, et al. APACT: phase III, multicenter, international, open-label, randomized trial of adjuvant nab-paclitaxel plus gemcitabine vs gemcitabine for surgically resected pancreatic adenocarcinoma. Program and abstracts of the 2019 Annual Meeting of the American Society of Clinical Oncology; May 31 - June 4, 2019; Chicago, Illinois. Abstract 4000.
  17. Ghaneh P, Palmer DH, Cicconi S, et al. ESPAC-5F: four-arm, prospective, multicenter, international randomized phase II trial of immediate surgery compared with neoadjuvant gemcitabine plus capecitabine (GEMCAP) or FOLFIRINOX or chemoradiotherapy (CRT) in patients with borderline resectable pancreatic cancer. Program and abstracts of the 2020 Annual Meeting of the American Society of Clinical Oncology; May 29-31, 2020. Abstract 4505.
  18. O'Reilly EM, Lee JW, Zalupski M, et al. Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation. J Clin Oncol. 2020;38:1378-1388.
  19. van Hagen P, Hulshof MCCM, van Lanschot JJB, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366:2074-2084.
  20. Bang Y-J, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687-697.
  21. Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365:1273-1283.
  22. Hofmann M, Stoss O, Shi D, et al. Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology. 2008;52:797-805.
  23. Safran H, Winter KA, Wigle DA, et al. Trastuzumab with trimodality treatment for esophageal adenocarcinoma with HER2 overexpression: NRG Oncology/RTOG 1010. Program and abstracts of the 2020 Annual Meeting of the American Society of Clinical Oncology; May 29-31, 2020. Abstract 4500.
  24. Shitara K, Bang Y-J, Iwasa S, et al. Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-positive advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma: a randomized, phase II, multicenter, open-label study (DESTINY-Gastric01). Program and abstracts of the 2020 Annual Meeting of the American Society of Clinical Oncology; May 29-31, 2020. Abstract 4513.
  25. Shitara K, Bang Y-J, Iwasa S, et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med. 2020;382:2419-2430.
  26. Modi S, Saura C, Yamashita T, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382:610-621.
  27. Fam-trastuzumab deruxtecan-nxki [package insert]. Basking Ridge, NJ: Daiichi Sankyo, Inc.; 2019.
  28. Siena S, Di Bartolomeo M, Raghav KPS, et al. A phase II, multicenter, open-label study of trastuzumab deruxtecan (T-DXd; DS-8201) in patients (pts) with HER2-expressing metastatic colorectal cancer (mCRC): DESTINY-CRC01. Program and abstracts of the 2020 Annual Meeting of the American Society of Clinical Oncology; May 29-31, 2020. Abstract 4000.
  29. Sartore-Bianchi A, Trusolino L, Martino C, et al. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): a proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016;17:738-746.
Back Next
Provided by Clinical Care Options, LLC.

Clinical Care Options, LLC
12001 Sunrise Valley Drive
Suite 300
Reston, VA

Sophia Kelley
(203)-316-2125
skelley@clinicaloptions.com
www.clinicaloptions.com

Supported by an educational grant from
Daiichi Sankyo, Inc.

Leaving the CCO site

You are now leaving the CCO site. The new destination site may have different terms of use and privacy policy.

Continue